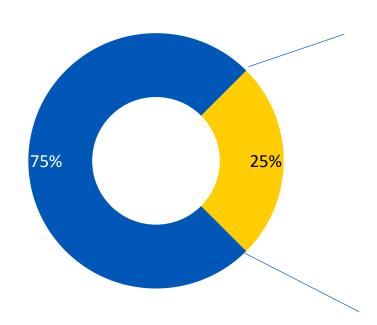


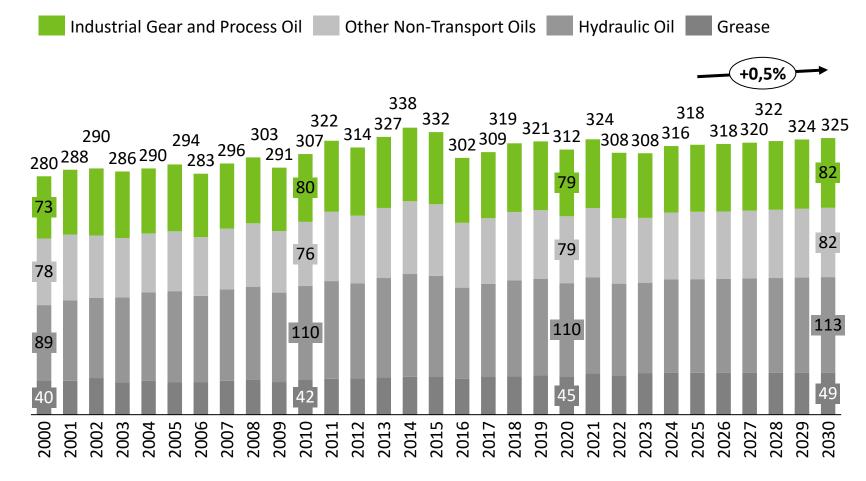
Polyisobutene as a Solution in Industrial Lubricants:

Application in Sugarcane Mills

About Braskem



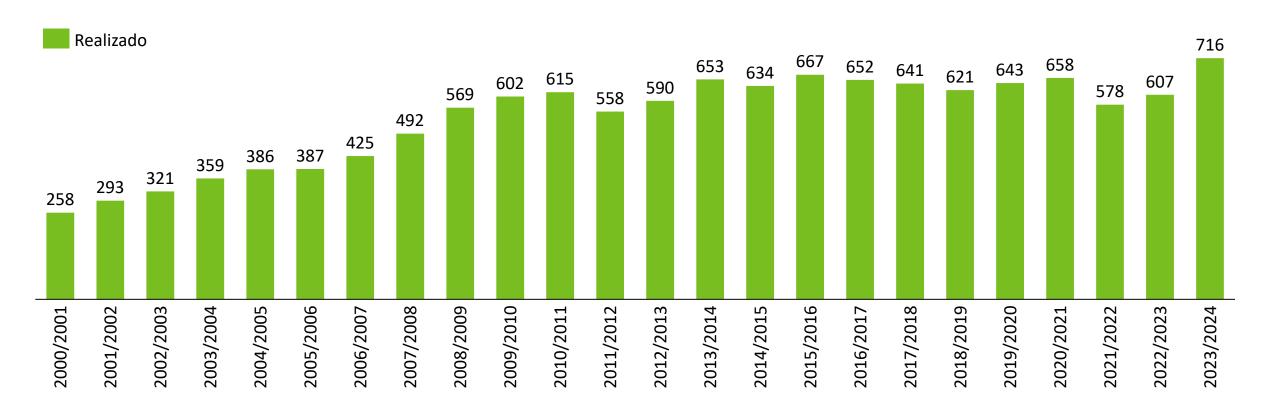
INDUSTRIAL


Segment Review

2025 Lubricants Demand (kt) - Brazil

Total Transport Lubricants Total Non-Transport Lubricants

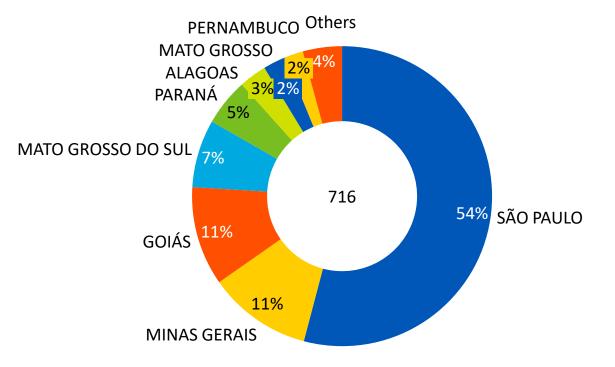
Non-Transport Lubricants Demand (kt) - Brazil



Source: S&P Global's Lubricants Demand Model

Segment Review

Histórico da moagem (million tons) - Brazil



Source: S&P Global's World Ethanol Production by Country; ÚNICA: Histórico de acompanhamento da safra de cana-de-açúcar no centro-sul

Segment Review

Sugarcane Millingpor by state (million tons) - Brazil

Source: Única e S&P Global

345 ethanol plants in operation

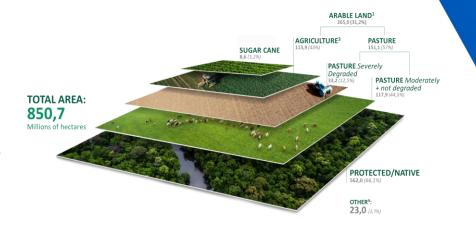
21 under construction

28 projects under evaluation

World ethanol production to break records in 2026 and 2027. The most substantial rise in absolute terms will occur in South America and Asia

+11% | 23/24 to 2027 (**40 million cubic meters**)

Environmental Review


Sugarcane production occupies ~1% of total area. Production increase driven mainly by efficiency

- 1st producer sugarcane, 2nd ethanol
- 32 billion liters of sugarcane ethanol - 2034 (+5 billion L vs 2024)¹
- Second-generation ethanol technologies

- Capacity expansions: investments and improvements in ethanol mills (+3.8 billion L 2024-34)¹
- Logistics: enhancements in transportation and logistics

Braskem

66% of Brazilian total land (562 MM ha) is protected or native while 31% is arable. From this, 114 MM ha are used for agriculture (13% of total land)¹



Sugarcane production uses ~9 MM ha, which represents ~3% of Brazilian arable land (or ~1% of total¹)

Environmental Review

While occupying ~1% of the country's land, sugarcane supplies over 16% of Brazil's energy demand

Sugarcane is the primary source of renewable energy on a matrix of 314 million toe*. It represents

~16% of the national

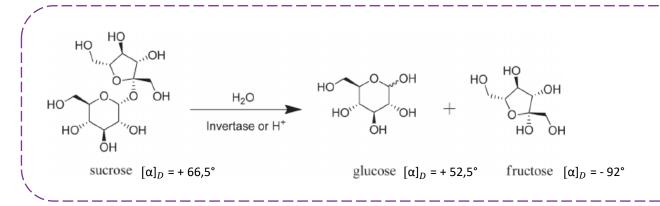
Brazilian matrix¹

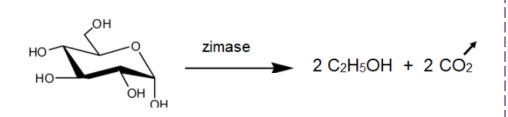
Renewable sources
represent ~47% of
Brazilian energy
matrix. Globally, they
represent ~14%¹

*toe: ton of oil equivalent

Source: ¹Matriz energética

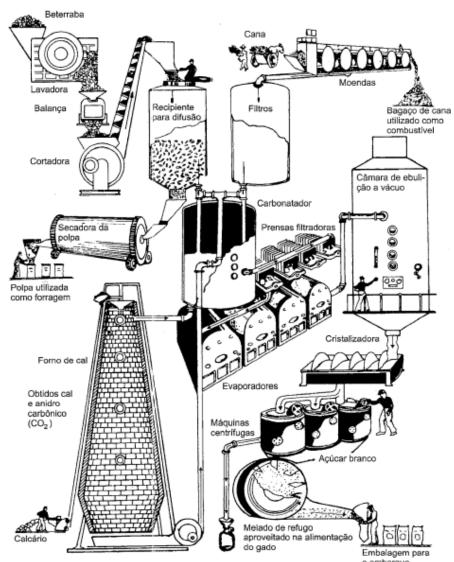
General, importance and challenges


Non-stop operation: efficient lubrication



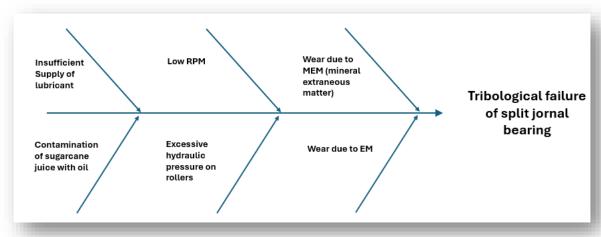
- The production is limited to a certain time of the year:
 - South-Central: April to November
 - North/Northeast: September to March
- Extreme Weather Conditions and its impacts in the "ATR" concentration

Main Steps:


- Harvest;
- 2. Milling;
- 3. Juice clarification;
- 4. Juice concentration;
- 5. Juice x sugar separation;
 - **5.1** Chemical treatment of sugar;
 - **5.2** Ethanol production.

Milling Machinery

Fabricação do açúcar de beterraba e de cana



Bearing

Milling "Volandeira"

Lubrication Requirements

Tribological Failure Analysis and Suitability of Grease Lubrication for Sugarcane Crushing Mill Journal Bearings - P. N. Nagare, . H. N. Kudal; J Fail. Anal. and Preven. 2018

Critical phase:

- Juice extraction via pressing or milling
- Sugar mill throughput depends on crushing unit performance
- Crushing unit uses rollers mounted on journal bearings
- Bearings operate at low speeds (3–50 rpm) under high static and dynamic loads

Harsh Operating Conditions

- Bearings exposed to:
 - Corrosive cane juice
 - Moisture
 - Particulate contaminants

In sugarcane crushing:

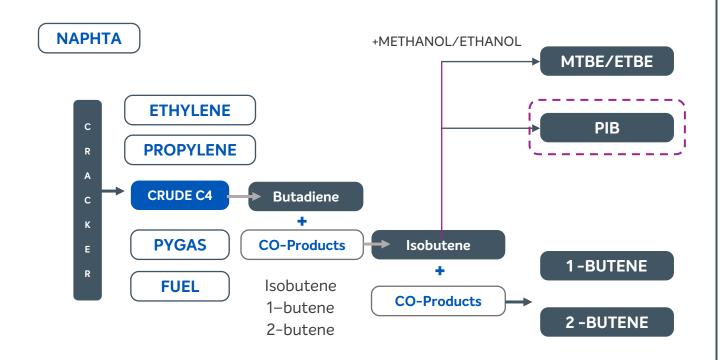
- Bearings operate under boundary or mixed lubrication
- Due to slow speeds and high mechanical stress

Robust lubrication strategies to minimize wear and ensure reliability

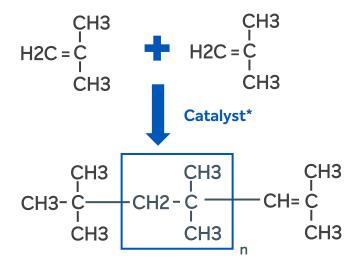
Lubrication Requirements

Mills

- Rollers operate at low speeds (3– 5 rpm)
- Journal bearing surfaces endure pressures of 100–150 kg/cm²
 Lubricant must offer:
 - Proper viscosity
 - Strong adhesion to metal surfaces
 - Excellent **film strength**
 - Adequate protection against wear on bearings
 - Effective rust and corrosion protection



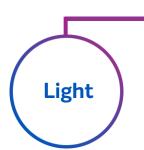
Gears


- Gears are open-type and require lubricants with:
 - High viscosity
 - Excellent adhesiveness
- Due to the difficulty of cold application, these lubricants are:
 - Supplied in fluid state via mixing with non-flammable solvents, or
 - **Heated** to facilitate application
- Lubricants must also provide:
 Strong film resistance
 Ability to resist oxidation and prevent deposit formation

(PIB) olyisobutene

Production Process

Reaction

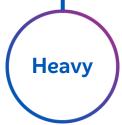


*In the presence of an acid catalyst and heat

Portfolio

Molecular

Weight (g/mol)


Viscosity at

37.8°C (cSt)

PIB

PIB	Molecular Weight (g/mol)	Viscosity at 37.8°C (cSt)			
24	1080	8710			
30	1300	19500			
32	1345	28000			

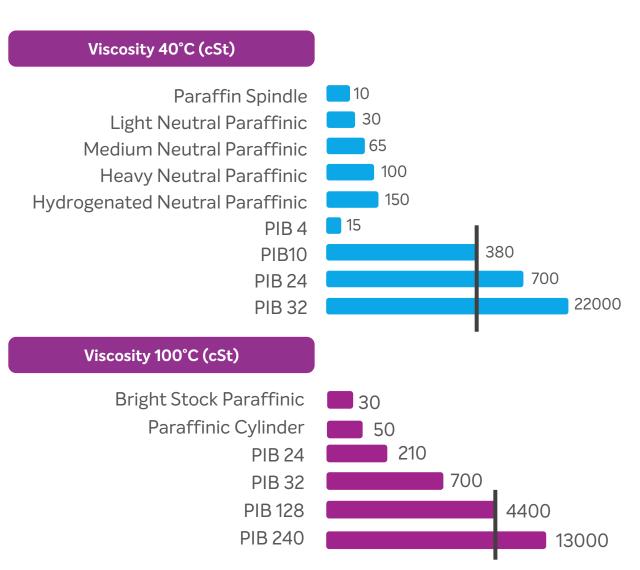
Molecular Weight (g/mol)	Viscosity at 100°C (cSt)
1948	2000
2100	2500
2425	3200
2500	4350
4200	12500
	Weight (g/mol) 1948 2100 2425 2500

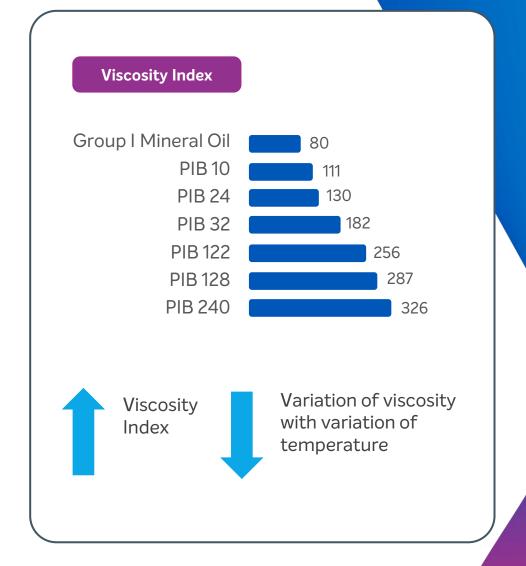
PIB

Braskem PIB Typical Values

Properties	Average Molecular Weght	Polydispersity Index (Mw/Mn)	Density at 20/4°C	Viscosity (37,8°C)	Viscosity (100°C)	Color (Pt-Co)	Water	Flash Point	Chlorine
Unit	Daltons		g/cm³	cSt	cSt		ppm	°C	ppm
Test Method	Internal GPC method	Internal GPC method	ASTM D 4052	ASTM D 445	ASTM D 445	ASTM D 1209	ASTM E 203	ASTM D 92	ASTM D 5808
GRADES									
PIB4	350	1.14	0.82	16		70	80	125	180
PIB6	365	1.66	0.84	30	6	70	80	125	180
PIB8	500	2.16	0.85	106	12	70	80	130	180
PIB10	600	2.02	0.87	500	25	60	70	130	180
PIB16	675	3.00	0.88	1000	49	60	60	135	180
PIB24	1080	2.4	0.89	8710	220	50	50	190	160
PIB30	1300	1.8	0.90	19500	630	50	40	190	160
PIB32	1345	2.94	0.90	28000	680	50	50	195	160
PIB90	1948	3.5	0.91		2000	10	20	200	
PIB120	2100	2.2	0.91		2500	50	50	220	170
PIB122	2425	3.4	0.91		3200	50	50	235	170
PIB128	2500	3.9	0.91		4350	50	50	240	170
PIB240	4200	3.59	0.92		12500	50	50	245	170

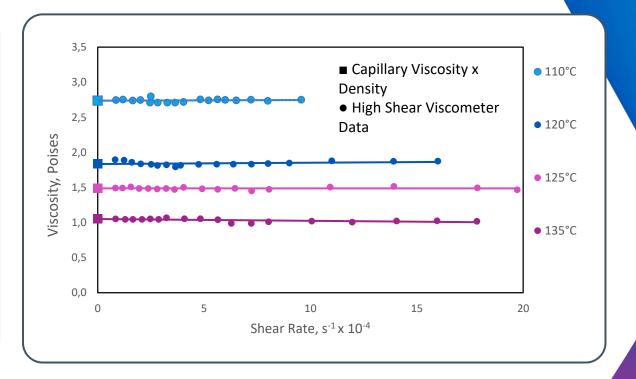
Physical and chemical general properties


- Physical State: liquid
- *Color:* colorless
- *Odor:* odorless
- *Solubility:* nonpolar solvents
- Solubility in water: no
- Burn: clean burn



Techcnical Data for Lubricant Applications

Techcnical Data for Lubricant Applications



Four Ball Wear Test

Test Operating at 600 RPM / 60°C and 60 Kg force

SCAR DIAMETER (mm)			RATING SCALE
	1 hour	8 hour	
Oil Blend 50% SAE - 50 and 50% Zero bright stock visc. 37.8°C - 120 cSt	0.68	1.20	0.7 mm - excelent 0.7 - 0.8 mm - good 0.8 - 1.0 mm - fair/poor
PIB 8	0.57	0.78	
PIB 24	0.60	_	
PIB 128	0.68	-	

PIB32 | Shear Stability

Braskei

PIB in Industrial Machine Lubricant

Requirements for lubricants used in milling machinery

- High Viscosity (
- Water Repellency 🗸
- Requirement for incidental food contact (
- Anti-Corrosive Properties
- High Temperature Resistance
- Extreme Pressure Additives Compatibility
- High tack to metal (

The **PIB** can be used as a **base oil** in this type of lubricant formulation, bringing benefits such as: low interaction with water, high viscosity, regulatory release for incidental contact with food, high tack and thermal stability at certain temperatures ranges.

SUGGESTED FORMULATION

Base Oil Additives

PIB: 30 – 95% Extreme Pressure: 2.5 – 4%

Mineral Oil: 5 – 70% Antioxidant: 1 – 2%

Anticorrosive: 1 – 2%

Medium and heavy PIB are suggested for this application

Product Regulatory Information

POLYISOBUTENE- CAS # 9003-27-4

NSF - H1 certified for incidental food contact lubricants

EU - Plastic materials and food contact substances

EU - Cosmetics

U.S. - FDA - Adhesives and coating components

US FDA - Paper and paperboard components

U.S. - FDA - Polymers

US - FDA - Adjuvants, processing aids and sanitizers

MERCOSUR – GMC – Materials for food contact

Regulatory Information Sheet (RIS)

Page 1/16

Product: PIB 6

SECTION I - FOOD CONTACT COMPLIANCE

Reviewed on 26 January, 2024

For regulatory information with regards to Food or Food Contact regulations, please, contact your local technical service.

SECTION II - GLOBAL REGULATORY INFORMATION

Reviewed on 26 January, 2024

DO YOU WANT TO **KNOW MORE?**

TS&D

INGRID MELCHIOR

ingrid.ferreira@braskem.com

THANK YOU!

Braskem